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Glutamate is the most abundant excitatory neurotransmitter, pre-
sent at the bulk of cortical synapses, and participating in many
physiologic and pathologic processes ranging from learning and
memory to stroke. The tripeptide, glutathione, is one-third glutamate
and present at up to lowmillimolar intracellular concentrations in brain,
mediating antioxidant defenses and drug detoxification. Because of the
substantial amounts of brain glutathione and its rapid turnover under
homeostatic control, we hypothesized that glutathione is a relevant
reservoir of glutamate and could influence synaptic excitability.We find
that drugs that inhibit generation of glutamate by the glutathione cycle
elicit decreases in cytosolic glutamate and decreased miniature excit-
atory postsynaptic potential (mEPSC) frequency. In contrast, pharma-
cologically decreasing the biosynthesis of glutathione leads to increases
in cytosolic glutamate and enhanced mEPSC frequency. The glutathi-
one cycle can compensate for decreased excitatory neurotransmission
when the glutamate-glutamine shuttle is inhibited. Glutathione may
be a physiologic reservoir of glutamate neurotransmitter.
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Glutamate is the most abundant excitatory transmitter in the
central nervous system, utilized at 50–70% of cortical synapses

(1, 2). Glutamate participates in diverse physiological processes,
such as developmental plasticity and long-term potentiation as well
as brain diseases: epilepsy, stroke, amyotrophic lateral sclerosis,
Alzheimer’s disease, Parkinson’s disease, and schizophrenia (3).
Glutathione is a tripeptide of glutamate, cysteine, and glycine, oc-
curring in neurons at concentrations of 0.2–2 mM; it is the most
abundant low molecular weight thiol of bacteria, plant, and animal
cells (4–6). As such, it regulates critical cellular processes such as
metabolism of estrogens, prostaglandins, leukotrienes, and xenobi-
otic drugs. Glutathione is well known as an antioxidant agent,
providing a major line of defense against oxidative and other forms
of stress, largely as a cofactor for the glutathione peroxidase and S-
transferase enzyme families (7–10).
Glutathione metabolism is governed by the glutathione cycle (Fig.

1A and SI Appendix, Fig. S1), in which glutamate is added and liber-
ated at discrete steps (4, 11). Glia serve as a major supplier of cysteine
for neuronal glutathione synthesis, and 50–60% of a glutamate neu-
rotransmitter is derived from the glutamine-glutamate shuttle between
neurons and glia, with smaller amounts of glutamate transmitter de-
rived from glycolysis (12–14). However, this shuttle is not the only
means to replenish supply of neuronal glutamate; when it is inhibited,
neurons quickly restore glutamate neurotransmission by an ill-defined
endogenous mechanism, suggesting that neurons might be making use
of a storage buffer of glutamate (15). We hypothesize that the gluta-
thione cycle may be one such glutamate reserve, especially considering
its high concentration and short half-life.
We previously reported that in addition to its support of an-

tioxidant function, the glutathione cycle also serves as a reservoir
of intracellular neural glutamate (16). Decreasing the liberation
of glutamate from the glutathione cycle leads to decreased cor-
tical neuron glutamate, while decreasing the utilization of glutamate
increases total glutamate by about 25%. These shifts in glutamate

pools could be achieved without increasing oxidative stress or cell
death. In the present study, we sought to further test this concept
by determining if shunting glutamate from the glutathione cycle
can shape excitatory neurotransmission. We employed selective
inhibitors of different steps of the glutathione cycle and the
glutamine-glutamate shuttle and show that glutathione serves as
a source for a material portion of glutamatergic neurotransmission.

Results
Inhibition of Glutathione Metabolism Depletes Neuronal Glutamate
and Affects Excitatory Transmission. To test the hypothesis that
glutathione is a significant reservoir for glutamate, we treated
neuronal cells with molecular inhibitors targeting enzymes of the
glutathione metabolic cycle: acivicin, L-buthionine sulfoximine
(BSO), and sulforaphane. Glutathione and glutamate were
quantified by Ellman’s procedure and glutamate oxidase methods
(17, 18). If glutathione constitutes a glutamate reservoir, then
inhibiting gamma-glutamyl transferase (GGT) with acivicin should
lead to decreased cellular glutamate as this enzyme is upstream of
the ultimate liberation of glutamate from the cycle (Fig. 1A and SI
Appendix, Fig. S1). Acivicin decreased intracellular glutathione
about 25%, consistent with prior reports (SI Appendix, Fig. S2B)
(19). GGT acts on glutathione to generate a γ-glutamyl amino acid
or glutamate, and glycine-cysteine, depending upon whether
an amino acid or water is used as an acceptor (20). As GGT is
a membrane protein, acivicin increases extracellular glutathione
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levels and decreases glycine-cysteine, which is the source of rate-
limiting cysteine in the intracellular synthesis of glutathione (21).
As we had previously demonstrated in cell lines (16), total

glutamate and glutathione levels declined in primary cortical
neurons treated with acivicin (SI Appendix, Fig. S2 A and B). To
confirm the specificity of this effect, shRNA targeting of GGT also
decreased glutamate levels (SI Appendix, Fig. S2C). As an addi-
tional test of the specificity of the effect, we find that the decrease
in glutamate brought by acivicin could be rescued by administra-
tion of pyroglutamate (5-oxoproline), a downstream metabolite in
the glutathione pathway that is a precursor of glutamate (SI Ap-
pendix, Fig. S1). Pyroglutamate selectively repleted glutamate, but
not glutathione (SI Appendix, Fig. S2 A and B).
To determine if glutamate availability from the glutathione

cycle (Fig. 1A) could shape excitatory transmission, we measured
the frequency of miniature excitatory postsynaptic currents
(mEPSCs), a reflection of presynaptic drive. Acivicin treatment
(24 h) significantly decreased mEPSC frequency (Fig. 1 B, C, and
E) and amplitudes to a smaller degree (Fig. 1 B, D, and F). To
demonstrate specificity of the effect, we sought to rescue the
decreased mEPSC frequency by pretreating with pyroglutamate
(PGA) (Fig. 1A). Pyroglutamate rescued the effect on mEPSC
frequency (Fig. 1 C and E) but not amplitude, consistent with it
being a presynaptic precursor of glutamate. As we previously
demonstrated, acivicin treatment at these concentrations did not
elicit significant oxidative stress or affect cell viability (16).

Inhibition of Glutamate Cysteine Ligase Depletes Neuronal Glutathione,
Elevates Glutamate, and Increases Excitatory Neurotransmission. Gluta-
mate cysteine ligase (GCL) is the rate-limiting step for glutathione
synthesis and utilizes glutamate as a substrate. Inhibition of GCL
with BSO depleted glutathione rapidly, reflecting its short half-life
(1–4 h) as a substrate of multiple enzymes (SI Appendix, Fig. S3B).

BSO treatment increased neuronal glutamate (SI Appendix, Fig.
S3A), consistent with our prior findings in cell lines (16). This was
confirmed by shRNA to GCLC, the target of BSO, which in-
creased glutamate levels (SI Appendix, Fig. S3C). To further test
the role of GCL in modulating glutathione and glutamate, we
utilized sulforaphane, which increases GCL expression through
activation of the Nuclear factor-erythroid 2 p45-related factor 2
(Nrf2) pathway (22). While BSO inhibition of GCL decreased
glutathione and increased glutamate, sulforaphane had reciprocal
effects: It induced GCL and decreased glutamate while increasing
glutathione (SI Appendix, Fig. S3 D–F). We previously dem-
onstrated that these doses and durations of treatment do not
cause detectable changes in oxidative stress or neuronal viability
(16). BSO was utilized to test whether increasing the liberation of
glutamate from the glutathione cycle could shape excitatory trans-
mission. The BSO-induced increase in glutamate was accompanied
by an increase in mEPSC frequency (Fig. 2 B, C, and E) and a
smaller increase in amplitude (Fig. 2 B, D, and F).

The Glutathione Cycle Can Complement the Glutamate-Glutamine
Shuttle and Influence Excitatory Neurotransmission Under Conditions
of Glutamine Restriction. The glutamate-glutamine shuttle (SI Ap-
pendix, Fig. S4) between neurons and glia contributes 50–60% of a
glutamate neurotransmitter (12, 13, 23) with intracellular sources
such as glycolysis supplying the remainder. In the shuttle, glutamate
is converted to glutamine in astrocytes, and then imported to neu-
rons by system A transporters, where it is converted to glutamate
intracellularly by phosphate-activated glutaminase (24). However,
glutaminase knockout mice (25) or blockade of system A trans-
porters with methylaminoisobutyric acid (MeAIB) (15) fail to block
excitatory neurotransmission. We explored whether the glutathione
cycle can complement the actions of the glutamate-glutamine
shuttle by blocking import of glutamine by the system A transporter
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Fig. 1. Blocking efflux of glutamate from the glutathione cycle decreases mEPSC. (A) Schematic representation of the glutathione cycle and inhibition of GGT by
acivicin, which is upstream of the liberation of glutamate. Details appear in SI Appendix, Figs. S1 and S2. (B) Representative mEPSC traces in primary cortical
neurons treated 24 h with vehicle, 25 μM acivicin, and/or 5 μM PGA. Acivicin decreased mEPSC frequency, which can be recovered by pyroglutamate. (C)
Distribution of mEPSC frequency in cortical neurons treated with acivicin. (D) Distribution of mEPSC amplitude in cortical neurons treated with acivicin. (E)
Cumulative probability plots of mEPSC frequency. Acivicin, which decreases efflux of glutamate from the glutathione cycle, decreasedmEPSC frequency, a reflection of
presynaptic drive. Pyroglutamate restores glutamate and presynaptic drive (see also SI Appendix, Fig. S2A) (n.s., not significant). (F) Cumulative probability plots of
mEPSC amplitude. Acivicin decreased mEPSC amplitude to a smaller degree than frequency. (#P < 0.01, ‡P < 0.0001 by Steel–Dwass all pairs test.)
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(15), which imports glutamine into neurons, after which it is con-
verted to glutamate (Fig. 3A).
As expected, MeAIB decreased the average mEPSC frequency

(Fig. 3 B, C, and E). Acivicin, which diminishes the availability of
glutathione-derived glutamate, decreased average mEPSC frequency
significantly, although not to the same extent as MeAIB (Fig. 3E).
mEPSC frequency declined even further when acivicin and MeAIB
were coadministered, consistent with glutamate derived from the
glutathione cycle contributing to maintenance of excitatory neuro-
transmission when glutamine supply is restricted (Fig. 3 C and E).
mEPSC amplitude distributions were similarly diminished by acivicin,
but to a smaller degree, although combinations of acivicin andMeAIB
did not further impair the effect of MeAIB alone (Fig. 3 D and F).

Glutamate Derived from the Glutathione Cycle Rescues Excitatory
Postsynaptic Currents During Glutamine Limitation. We next exam-
ined whether glutamate from the glutathione cycle could rescue
mEPSC when glutamine supply was restricted (Fig. 4A). BSO,
which augments glutamate levels, also increased mEPSC frequency,
while glutamine restriction by MeAIB decreased mEPSC frequency
(Fig. 4 B, C, and E). However, administration of BSO rescued the
decreased mEPSC frequency brought by MeAIB (Fig. 4 B, C, and
E, green line), suggesting the glutathione cycle may compensate for
decreased availability of glutamine, an established source of gluta-
mate neurotransmitter. BSO also significantly improved the de-
crease in mEPSC amplitudes by MeAIB, although to a smaller
degree than its effect upon mEPSC frequency (Fig. 4 D and F),
consistent with a more predominant presynaptic effect.

Discussion
We previously reported that the glutathione cycle may serve as a
reservoir of total neuronal glutamate (16). Treatments that decrease
the liberation of glutamate from the glutathione cycle lead to de-
creased intracellular glutamate, whereas decreasing utilization of
glutamate or glutathione synthesis increases it (16). We now report
that shunting of glutamate derived from glutathione can shape

excitatory neurotransmission. Inhibiting GCL, which utilizes gluta-
mate to synthesize glutathione, leads to increased glutamate and
mEPSC frequency. Decreasing the release of glutamate from the
glutathione cycle by blocking GGT leads to diminished mEPSC.We
demonstrated specificity of the effect of acivicin, which decreases
glutamate liberation from glutathione, by rescuing with pyrogluta-
mate, the immediate metabolic precursor of glutamate in the glu-
tathione cycle. We have previously demonstrated that these fluxes
of cytosolic glutamate can occur without significant increases in
oxidative stress or altered cell viability (16). Thus, the glutathione
pathway is poised to contribute glutamate without impacting neu-
ronal viability unless there are massive, sustained deficits (16, 26).
Our studies also reveal a modest effect of glutathione cycle inhibi-
tors on mEPSC amplitude, implying possible postsynaptic effects.
These could include an increase in the number or activity of post-
synaptic receptors or may reflect increases in the number of neu-
rotransmitter (glutamate) molecules or vesicles. While changes in
mEPSC amplitude are often postsynaptically driven, increases in
cytoplasmic glutamate can increase mEPSC amplitude, while de-
creased filling of vesicles decreases mEPSC amplitude (27–30).
Another mode by which GSH could potentially modulate neuro-
transmission is by its effects on redox-regulated presynaptic proteins
such as synaptosomal-associated protein 25 (SNAP-25) and N-
ethylmaleimide-sensitive factor (NSF) (31, 32). Glutathione has
also been reported to modulate the redox-sensitive site of NMDA
receptors (33). These changes could be operational in neurode-
generative diseases, reflecting an imbalance in redox balance
modulated by GSH. The redox effects of thiol compounds have
been analyzed in modulation of GABA- and glycine-evoked cur-
rents in rat retinal ganglion cells (34). In addition to effects on
redox-modulated synaptic proteins, depletion of GSH can alter
steady-state nitrosylation (35). More generally, GSNO is a
major source of NO bioactivity in the brain and its depletion
will inhibit the activity of GSNOR resulting in increased
nitrosylation (nitrosative stress) (36, 37) and possibly altered
neurotransmission. Further studies on the potential redox

B

D F

C

E

A
g-glutamyl
transferase

(GGT)

pyroglutamate
(PGA)

g-glutamyl
cysteine ligase

(GCL)

Glutathione
(gGluCysGly)

BSO

5-oxoprolinase
(OPLAH)

Glutamate
(Glu)

Control

BSO (Glu     )

0 - 100 ms 100-200 ms 200-300 ms
300-400 ms 400-500 ms >500 ms

Distribution of mEPSC frequency

BSO
Control

0 20 40 60 80

100

Control
BSO ‡

0.0

0.5

1.0

Inter-event intervals (s)

Fr
ac

tio
n 

of
 m

E
P

S
C

s

0 0.5 1.0

Control
BSO

‡

Peak amplitudes (pA)

0.0

0.5

1.0

0 50 100

Fr
ac

tio
n 

of
 m

E
P

S
C

s

BSO

Distribution of mEPSC Amplitude

Control

0 20 40 60 80

100

0-10 pA 10-20pA 20-30pA
30-40pA 40-50pA >50pA

Fig. 2. Efflux of glutamate from the glutathione cycle can increase mEPSC. (A) Schematic representation of the glutathione cycle and inhibition of GCL by
BSO, which shuttles free glutamate into glutathione. Details appear in SI Appendix, Figs. S1 and S3. (B) Representative mEPSC traces in primary cortical
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effects of GSH need to be conducted to ascertain whether this
aspect plays a role in neurotransmission.
The glutathione pathway may also supply glutamate when glia-

derived glutamine is blocked by MeAIB, which inhibits system A
transporters. While glia-derived glutamine provides 50–60% of a
glutamate neurotransmitter, when the pathway is blocked with
MeAIB, excitatory transmission abruptly decreases but rapidly re-
covers, consistent with endogenous neuronal sources of glutamate
neurotransmitter (15). We suggest glutathione is one such endoge-
nous source, as impairing glutamate liberation from the cycle further
diminishes synaptic activity by MeAIB, while increasing glutamate
availability can rescue the impairment by MeAIB. A reservoir ca-
pacity of glutathione may be utile during periods of sustained syn-
aptic activity. Future studies on the readily releasable glutamate
pool in the presence of the GSH-glutamate cycle inhibitors would
yield a more detailed picture of glutamate dynamics. The rapidly
releasable pool is the maximum number of vesicles that can be re-
leased in 2 or 3 s and is thought to coincide with those vesicles that
are docked to the active zone and primed for release. They may
represent the pool of glutamate most recently recruited for neuro-
transmission and could be relevant to the present study involving
acute effects of drugs affecting the GSH-glutamate cycle. Whole-cell
recording techniques using methods described previously may be
utilized to estimate the readily releasable pool size can be measured
here after manipulating GSH-associated enzymes (38).
Alterations in neuronal glutamate levels, such as by fluxes to

and from a glutathione reservoir, might have an impact upon
glutamate neurotransmitter. Vesicular glutamate transporters
have a much lower affinity for glutamate 0.5–3.5 mM than plasma
membrane transporters GLT1/EAAT2, whose Km is 4–40 μM (39,
40). Furthermore, as glutamate neurotransmitter typically does
not saturate postsynaptic receptors, modest impacts upon release
frequency may influence synaptic strength (27, 29, 41, 42). “Phasic”
axons that fatigue in their glutamate neurotransmitter release have

lower glutamate levels than “tonic” glutamate axons with greater
glutamate levels (43). Glutamine levels are similar in both, suggesting
that significant reservoirs of glutamate exist in neurons independent
of glutamine. Our findings also affirm prior reports that directly in-
creasing intracellular glutamate concentration in presynaptic termi-
nals leads to greater excitatory postsynaptic currents (27, 29). In our
specific approach, we suggest that the glutathione cycle may be one
such source of this glutamate. Localized glutathione synthesis would
be expected to have an even more pronounced effect, and it has been
suggested that nonsoma areas contain more glutathione (44). In-
terestingly, our studies reveal the presence of the enzyme GGT in
synaptosomes, suggesting that there may be accentuated exchange of
glutathione to glutamate near vesicles (SI Appendix, Fig. S5). Met-
abolic flux analysis would yield additional information regarding flux
of glutathione and glutamate under various conditions.
These findings may be relevant to human disease. Glutamatergic

dysfunction has been implicated in schizophrenia by multiple lines
of evidence (45–52). Several investigators have reported aberrant
glutathione levels in schizophrenia patients, including medication
naïve subjects (53–57). Mice lacking the modifier subunit of GCL
have a 60% reduction in glutathione, accompanied by abnormal
cortical gamma synchrony, decreased parvalbumin interneurons,
and behavioral phenotypes relevant to schizophrenia (58–60).
Despite substantial glutathione deficits, the mice are outwardly
healthy. Additionally, rare deficiencies of glutathione cycle en-
zymes (gamma-glutamylcysteine ligase, glutathione synthetase,
5-oxoprolinase, and gamma-glutamyl transferase) have all been
associated with neuropsychiatric and cognitive impairments, al-
though detailed phenomenological characterization has not been
reported (9, 61, 62). A role for glutathione as a glutamate res-
ervoir may be a bridge between distinct lines of research that
implicate glutamatergic dysfunction and aberrant glutathione levels
in neuropsychiatric conditions such as schizophrenia.
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cycling and blockade of system A glutamine transporters by MeAIB. Details appear in SI Appendix, Fig. S4. (B) Representative traces of mEPSC recordings in
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Our model may have mechanistic implications to interpret
magnetic resonance spectroscopy studies in human subjects, in
which total regional brain glutamate may be determined (63, 64),
although it is unknown if this affects synaptic activity. Seven-
Tesla (7T) proton magnetic resonance spectroscopy studies have
shown that glutamate levels were significantly lower in first ep-
isode psychosis subjects, whereas glutamine levels were un-
altered (65). This study also revealed lower levels of glutathione
in the anterior cingulate cortex and thalamus, which supports the
idea of origin of glutamate from glutathione (16).
We suggest that two drugs available for human use, sulforaphane,

which increases glutathione, and pyroglutamate, which is converted
to glutamate in the glutathione cycle, may be therapeutically ben-
eficial. Sulforaphane (66) is a potent inducer of the Nrf2 tran-
scription factor, has blood–brain barrier penetration (67), and might
expand the size of the glutathione reservoir by our observation that
it increases expression of GCL, the rate-limiting step in glutathione
biogenesis. Our recent study in human subjects revealed that sul-
foraphane elevates peripheral glutathione levels and those of other
brain metabolites (68). Sulforaphane has also been reported to
improve symptoms of autistic spectrum disorder (69). Pyroglutamate
is a glutamate precursor whose CSF concentration is 120 μM
(70), rivaling the 400 μMextracellular glutamine concentration (basal
glutamate is 2–3 μM). Oral administration of pyroglutamate has been
found to benefit age-associated memory impairment (71), alcoholic

encephalopathy (72), and delirium induced by anticholinergic medi-
cation (73). Pyroglutamate may be a promising therapeutic candidate
for cognitive dysfunction in schizophrenia and other conditions with
glutathione disturbances.

Materials and Methods
Cell Culture and Reagents. Dissociated cortical neuron cultures from Sprague–
Dawley rats were prepared as described (74). Primary cortical neurons were
maintained in Neurobasal medium (Life Technologies Corporation) supple-
mented with 1x B-27 (Life technologies).

Measurement of Glutathione. Total and oxidized glutathione were measured
using 5–5′-dithiobis (2-nitrobenzoic acid). Additional details of reagents and
methods are available in SI Appendix.
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